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ABSTRACT

This paper investigates the statistical mechanics of a quantum harmonic oscillator ensemble. We begin
by introducing the fundamental concepts, including the derivation of the energy eigenstates and eigenvalues of
the quantum harmonic oscillator in the position basis. We also establish the connection between the partition
function and the density matrix, outlining the relevant calculation methods. In this context, we derive the
partition function and the density matrix of the quantum harmonic oscillator in the energy basis.

A unique aspect of this paper is the calculation of the partition function and density matrix of the quan-
tum harmonic oscillator in both the position and momentum bases. While the position basis approach is less
common due to the complexity of the calculations, the momentum basis offers a complementary perspective by
representing the system in terms of momentum eigenstates. We demonstrate that the partition function remains
unchanged across all bases, whereas the density matrix transforms according to the basis chosen. We carefully
examine the implications of these density matrices, particularly in the quantum and classical limits, and discuss
their physical significance.
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Quantum Statistical Ensemble, Partition Function, Density Matrix, Trace, Diagonal Elements, Mehler’s Formula, Gaussian,
Probability Density, Classical Limit, Quantum Limit, Molecular Systems.

I. INTRODUCTION

The quantum harmonic oscillator is a fundamental model in quantum mechanics, widely used to describe systems where the
restoring force is proportional to displacement. Its importance extends beyond direct applications, as many potential energies
can be approximated by harmonic potentials near equilibrium positions via a Taylor expansion. This makes the harmonic
oscillator a universal tool in both classical and quantum mechanics.

In quantum mechanics, the discrete energy levels of the harmonic oscillator provide a clear illustration of energy quan-
tization. It also plays a central role in quantum statistical mechanics, where it serves as a prototypical system for calculating
thermodynamic properties such as free energy and entropy across different statistical ensembles.

This study investigates the quantum harmonic oscillator within the framework of quantum statistical mechanics, deriving
the energy eigenstates and eigenvalues primarily in the position representation. We introduce the concept of quantum statistical
ensembles, linking the partition function to the density matrix. The analysis then extends to the calculation of the partition
function and density matrix expressed in multiple bases—energy, position, and momentum. While the position basis provides
spatial intuition, the momentum basis offers a complementary perspective rooted in the system’s momentum eigenstates. Key
quantities such as the diagonal elements of the density matrix, the partition function, and probability densities are computed
and compared across these bases. Finally, we examine the classical and quantum limits of the model, highlighting the physical
insights gained from these different representations.

II. THEORETICAL BACKGROUND

A. Energy Eigenstates and Eigenvalues of the Quantum Harmonic Oscillator

The quantum harmonic oscillator is one of the most important systems in quantum mechanics. Its Hamiltonian in the position
basis is given by
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where p = fihﬁ is the momentum operator, and m and w represent the mass and angular frequency of the oscillator,

respectively. To derive the energy eigenstates and eigenvalues, we begin by writing the time-independent Schrodinger equation
for the system:
R dP(x) 1 5 o,
o daZ + S Y(z) = Ev(x).

This is a second-order differential equation for the wavefunction (). To simplify the equation, we introduce a dimen-
sionless variable § = /¥ x, which rescales the system in terms of the natural units of the harmonic oscillator. By expressing

the derivatives in terms of this new variable, we get

d mw d d? mw d?
— =4 /—— and — = ——.
dx h d¢ dx? h dg?

Substituting these into the Schrodinger equation yields
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which simplifies to

hw dp(€)  hw o -
T2 ae + 75 P(§) = Ey(§).

Dividing through by %W results in
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where we introduce a new parameter A = % The equation now reads

PUE) | 20
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This is a standard form of the Schrodinger equation for the quantum harmonic oscillator in terms of the dimensionless
variable £. To solve it, we first examine the asymptotic behavior of the solution. For large &, the £ term dominates, and we

approximate the equation as

) o
S

The general solution to this approximate equation is
+£2/2
P(§) ~ e 7

Since the wavefunction must be normalizable, we discard the exponentially growing solution e

. . g2 .
decaying solution e ¢ /2 Thus, the general form of the wavefunction is

W(&) = h(&)e <2,

where h (&) is an unknown function that we will now determine.
Next, we substitute this expression for 1)(£) into the Schrodinger equation. The first and second derivatives of () are:

2
+€°/2 and retain only the

W(E) =W (e~ gh(g)e 2,
and
W) = (§)e™ /= 26 ()™ + (€ — Dh(§e™ /2.
Substituting 1(£) and " (£) into the Schrodinger equation and simplifying, we obtain
— [17(€) = 261 () + (€ = DAE)] e /2 + €h()e™/* = An(€)e /2.
Canceling the common factor of e/ 2, we are left with the equation
h'(€) — 261 (€) + (A = DA(E) = 0.

This is a second-order linear differential equation for the function h(£). We solve this equation by assuming a power

series expansion for i (&) of the form
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h(f) = Z an™.
n=0

Substituting this series into the differential equation leads to a recursion relation for the coefficients a,,. In order to obtain
a physically acceptable, normalizable solution, we require that the series terminate, meaning that (&) must be a polynomial.
This condition imposes a constraint on A, yielding
A=2n+1, n=0,1,2,....

This quantization condition gives the energy eigenvalues of the harmonic oscillator:

E, =hw (n—&—%) 2.1)

The solutions for h (&) are proportional to the Hermite polynomials H, (£), which are defined as
dn

LIPS

dgr

Thus, the normalized energy eigenfunctions of the quantum harmonic oscillator are given by

Ha(€) = (=1)"e

t H, _e
(@) = (%) 27(»36 5 22)
where
-\

B. Density Matrix and Partition Function

In quantum statistical mechanics, the density matrix p is a fundamental quantity used to describe the properties of a system in
thermal equilibrium at temperature 7. It not only encodes the quantum mechanical state of the system but also accounts for its
interaction with a heat bath, making it a powerful tool for describing systems that may be in a mixed state rather than a pure
state! For a system described by the Hamiltonian H, the density matrix in thermal equilibrium can be expressed in terms
of the energy eigenstates {|1x)} and their corresponding energy eigenvalues Ej.

We first consider the system within the canonical ensemble, which is a statistical description suitable for systems in contact
with a heat bath. In this ensemble, the probability of the system being in a state | ) with energy E}, is given by the Boltzmann
distribution:

e PEk
Pr =
Q
1

where 8 = T is the inverse temperature, and @ is the partition function, which acts as a normalization factor ensuring
131

that the total probability over all possible states sums to 1
Next, we can express the density matrix p as a weighted sum of the energy eigenstates |1)x), with weights given by the
Boltzmann factor normalized by Q:

e PEk
p= Zpk|¢k><¢k\ = Z TW)UW)H
k

k

Since the energy eigenstates |1, are eigenstates of the Hamiltonian operator H, satisfying H|yx) = Ek|tx), we can
rewrite the Boltzmann factor e “#F* in terms of the Hamiltonian operator itself, eliminating the need to explicitly sum over
the index k. In this form, the summation over k acts only on the eigenstates, while the Boltzmann factor is rewritten as the
exponential of the Hamiltonian:

e e PH

BH
0 ;W}kﬂwk‘: 0

This expression shows that the density matrix is proportional to the exponential of the Hamiltonian operator H, normalized
by the partition function Q.
To compute the partition function (), we apply the normalization condition of the density matrix, which requires that the

trace of p equals 1:
676 a
Tr =Tr(p) =1
@) (»)
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Since @ is a constant, it can be factored out of the trace:

%Tr(e_ﬁﬁ) =1

which leads to the expression for the partition function:

Q= Tr(e ")

The partition function plays a crucial role in determining the thermodynamic properties of the system, as it encodes a
weighted sum over all possible energy states, with weights given by the Boltzmann factor. Finally, we obtain the canonical
form of the density matrix:

e PH

p=—
Tr (6*5 H )
This expression is of fundamental importance in quantum statistical mechanics, as it provides a compact representation

of the system’s state in thermal equilibrium. The trace condition ensures the proper normalization of the density matrix, while
the exponential form incorporates the probability distribution of the system’s energy states.

C. Partition Function and Density Matrix of the Quantum Harmonic Oscillator in Energy Basis

For the quantum harmonic oscillator, deriving the partition function and density matrix in the energy basis is a common and

practical approach. This method simplifies the problem significantly compared to other representations, such as the position
basis.

The partition function @ is defined as the trace of the operator e~ ## | where H is the Hamiltonian of the system and
8= ,CE%T is the inverse temperature. In the energy basis, the eigenstates |n) of the Hamiltonian satisfy H|n) = E,|n), with
E, = (n+ 1) hw. The trace can then be expressed as:

Q="Tr (efﬁﬁ) = i(n|efﬁﬁ|n>.

n=0
Since this operator is a function of the Hamiltonian, we are able to replace the Hamiltonian operator with energy eigen-
values, i.e. (n|e ?H|n) = e #En . the partition function becomes:

oo

oo
— — Dnw
Q:Ze ﬁEn:Ze B(n+3)he
n=0

n=0

Factoring out the zero-point energy term (the energy when n = 0):

 Bhw —Bnhw
QR=¢ 2 ge .

n=0
This is a geometric series with the first term a = e~ and common ratio 7 = e A% The sum of this series is:

oo

Z _Bnhw _ 1
e = —
— e~ Bhw

= 1—e
Thus, the partition function is:

-5 1 Bh

e 2 w
Q= 1o e = §CSChT 2.3)

The density matrix p in the canonical ensemble is given by:

e PH

’=7q

In the energy basis, the Hamiltonian His diagonal matrix, with eigenvalues E,,. Thus, the density matrix p becomes:

~ 1 — - n
p= =3 e P n)(nl.
Qn:O

Substituting the energy eigenvalues E,, = (n + 3) fiw, we get:
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n=0

_Bhw oo

€ 2 —pBnhw
=70 > e n)(n|

n=0
= (1= M) 3 eI
n=0

= paln)(n]

where the probability p,, of the system being in the n-th energy eigenstate is:
e Bnhw

Q

This expression for the density matrix shows that the system has a thermal distribution over the energy eigenstates, with
the probability of occupying the n-th state governed by the Boltzmann factor e ~#"

76nhw(1 7Bhw) _

— €

Pn =€

III. PARTITION FUNCTION AND DENSITY MATRIX OF THE QUANTUM HARMONIC OSCILLATOR IN
POSITION BASIS

In the previous section, we calculated the partition function and density matrix of the quantum harmonic oscillator in the
energy basis. In this section, we will calculate the partition function and density matrix in the position basis. This approach is

relatively uncommon, as the calculations are more tedious. Since the eigenstates of the operator e “?*! are no longer the same
as the basis for this calculation, we expect the density matrix in the position basis to be non-diagonal. We will derive the full
expression of the density matrix in the position basis and discuss the physical significance of the non-diagonal terms.

The matrix elements of e ## are given by:

(le™™Ma’y = 3 (ale™ yn) (a2’

n=0
=> e g (@)gn(a)
n=0

Since the harmonic oscillator wavefunctions are real, we have 7 (x') = 1., (z"). Therefore, the expression becomes:

(wle™ ey = 37 e PErap () (o)

Next, we substitute the expressions for the energy eigenstates (Equation [2.2)) and eigenvalues (Equation [2.1)), into the
matrix element expression:

)23 e e [T B @) (e 1)

(ac|e wh 27n/! ¢

n=0

oo
M (s 4 ) 3 oo Hn(E)n(E)
2np!
n=0

We now use the Mehler kernel® | a closed-form expression derived from Mehler’s Hermite formula, to evaluate the matrix
element <:c|e’5 H2'). This matrix element is the imaginary-time propagator of the quantum harmonic oscillator in the position
basis, and it encodes the full quantum statistical behaviour of the system at temperature 7" = 1/3. Mehler’s formula resums
the infinite sum over energy eigenstates into a compact expression:

o (w\" Hn(x)Hn(y) _ o\ —3 2zyw — (z° + y*)w?
;(5) n! —(1—w) exp 1 — w?

Applying this formula to the harmonic oscillator’s thermal operator leads to the Mehler kernel:
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2 | &2\ —fBhw
_BH| N @ / 1 — 1 (62 +€"2 1 Bhw) 28 — (£ +€7)e
(zle |lz7) = 1_ ¢—28hw © : exp efhw _ g—PBhw
__% (62 + 6’2) eﬁﬁw _ % (52 + 6/2) e*Bhw + 255/
27h smh ,Bhw 2 sinh(Shw)
mw (2x2 + 21‘/2) ePhv 4 (2362 + 21:/2) e P _ 8ua!
2nh sinh(Bhw) smh Bhw 4h 2 sinh(Bhw)
-7% . (2° + 2'*) cosh(Bhw) — 2za’
27k sinh(Bhw) smh ﬂhw 4h sinh % cosh 55—“’
_mw (1:2 + 1:’2) (cosh2 Bhw 4 ginh? ﬁ%) — 2za’ (cosh2 ﬁ% — sinh? B%)
27h smh ,Bhw AR sinh B% cosh Bh—“’
Bhw Bhw
\/ 2rh blnh (Bhw) exp { AR {(w +a')” tanh 2 + (@ — ') coth 5= 2

This is the simplified form of the matrix element expression. The diagonal elements of this matrix are the ones satisfying
2 = 2/, which are relatively simply terms.

(] |z) =

mw
h 2

2nhsinh(Bhw) P

The partition function Q(f) is the trace of e PH  This is equal to the summation of it’s diagonal elements, or in this case,
an integration over x. The partition function takes the form of a Gaussian curve, and its integration formula is used in the steps
below.

. +oo A
Q(B) =Tr (ef’BH) :/ (zle P |z) da

mw Foo mw o Bhw

- _mw ifdbead
2mh sinh(Bhw) /700 exp{ nt tan 2 } de
B mw . wh
"~ \/ 27h sinh(Bhw) mw tanh 22
Bh

w
= Zesch?2
2C

Notice that this is the same result as Equation (2.3)). This is hardly surprising, as the partition function is a scalar quantity,
and it is unaffected by the specific choice of basis. Now that we have the partition function, we can use it to obtain the elements
of the density matrix.

(@lola’) = o7 (ol 1o
= 2sinh /B% #ﬁ(ﬁhw)“p {*% {(17 + 2’)* tanh ﬁ% + (z — z)? coth ﬂ%] }

mw Bhw _mw "o Bhw _ Bhw
- tanh—exp{ 0 {(az—&—m) tanh—2 + (z — 2')? coth 3 }}

In the case of the quantum harmonic oscillator, the off-diagonal elements of the density matrix, {x|p|x’), represent the
quantum coherence between different position eigenstates. These elements describe the spatial extent of the wave packet
associated with the particle in the QHO. Specifically, they capture the quantum superposition between two distinct positions z
and z’. The off-diagonal elements measure the probability amplitude for the particle to be in a superposition of these positions,
even though the positions cannot be observed simultaneously in a single measurement. This reflects the quantum nature of
the system, where the particle can effectively “explore” multiple positions within the harmonic potential due to its wave-like
properties.

The magnitude of the off-diagonal elements provides information about the spatial coherence of the wave packet. A larger
magnitude indicates stronger coherence between the positions = and ', meaning the wave packet has significant overlap be-
tween these positions. This suggests that the particle’s wave function is delocalized, with the positions being highly correlated.
Conversely, smaller (or vanishing) off-diagonal elements indicate weaker coherence, implying that the wave packet is more
localized around specific positions. The distance |z — 2’| between the positions also plays a role: as |x — z’| increases, the
coherence typically decreases, reflecting the reduced overlap of the wave function at widely separated points.
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The diagonal elements (x|p|x) represent the probability densities that the particle is found at position z in the thermal
state described by the density matrix p.

(z|p|lx) = \/%tanh ﬁzwexp{f%x2 tanh ﬁ%} 3.1

IV. PARTITION FUNCTION AND DENSITY MATRIX OF THE QUANTUM HARMONIC OSCILLATOR IN
MOMENTUM BASIS

Following the calculation in the position basis, we now turn to the momentum basis. Similar to the position basis, this
approach is less common than the energy basis due to the added complexity in evaluating the density matrix. Since the
momentum eigenstates differ from the energy eigenstates, the density matrix expressed in the momentum basis will generally
be non-diagonal. We will derive the explicit form of the density matrix in the momentum basis and analyse the implications
of its off-diagonal elements. This provides complementary insights into the quantum harmonic oscillator by emphasising the
system’s behaviour in momentum space.

The normalized eigenfunctions of the quantum harmonic oscillator in the momentum basis are given by:

1 1 p p?
n = n) — H. n J——
0ul) = 010 = et (L e (5
where H,, (y) are the Hermite polynomials. The energy eigenvalues are F,, = fiw(n + %) The imaginary-time propagator, or
thermal kernel, in the momentum basis is:

oo}

le " p'y = 3 e P 6, (0) b (0)

n=0

Since ¢, (p) are real functions, ¢}, (p’) = ¢n(p’). Substituting the energy eigenvalues and the eigenfunctions:

. o H, (L> 2
—BH| 1 _ —Bhw(n+3) 1 Vhmw b
(ple Ip) "go e (whmw) /4 ] exp e
1 Hn (\/ }f;nw) p/2
(mhmw)1/4 il P (7 2hmw)
—Bhw/2 2 72 x —nBhw ’
= Ve (Mo ) 2 e () ™ ()
Thmw 2hmw o 2nn! hmw hmw
We define the dimensionless momenta: ,
_ p r_ D
= fimw’ &= hmw
and also define the substitution w = e . The expression then becomes:
N 1/2 0 n H H. (5/)
—BH| 1 _ W R e 2 (E) n(&p) Hn (&5
(ple™Ip) = =—=exp { GRRY )] doy)

n=0

Again, we use Mehler’s Hermite formula:

i’; (2)" Bol) _ (212 g {mm — (4 )}

! 1—22

Withu =&, v =&, and z = w:

1/2

) 9 ’ _ 2 12 2
(ple=?Mp'y = \/%(1 —w?) "% exp |:_%(§§ +€1/o2)] exp [ oyt 1 ngvj e }
_ w2 o '_é(§§+€;2)(1_w2)+2§p§,’,w—(f§+§l’3)w2]
mhmw(1l — w?) L 1—w?
L wr TG e+ WG 8+ g - G+ )
mhmw(l — w?) L 1—w?
- W' [ REHENA ) + 2
mhmw(l — w?) L 1-w?
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Let X = fhw, and let w = e~ . The prefactor coefficient is:
w'/? . 1 [ w
Vrhmw(l —w?)  Vrhmw V1 —w?

72X — X (X — ) = 2¢7¥ sinh X = 2wsinh X:

Sincel —w?=1—¢e =
Vahme V 2w smh X \/ 27rhmw sinh X

The argument of the exponential becomes:

ExpArg = —2&0 t 5;3)1(1 ) + 206G
—w

1 =30+ %) (1 +w?) + 2wpp’

~ hmw 1—w?
1 —3(p*+p?)(2wcosh X) + 2wpp’
T hmw 2w sinh X

= 24 p/2) cosh X — pr/]

" 2hmwsinh X [(

This is one common form of the exponent. To express it using tanh(X/2) and coth(X/2), we use the identities:

cosh X = cosh”(X/2) + sinh*(X/2)
2,2 ot
(p+ p')?tanh(X/2) + (p — p')? coth(X/2) = (P’ +p 1) cosh X — 2pp
5 sinh X

Thus,
(p—p')? coth(X/2)]

(p* +p'*) cosh X — 2pp’ = % sinh X [(p + p')? tanh(X/2) +

Substituting this into the exponent argument:

_ 1 l /N2 _2\2
ExpArg = ST { sinh X [(p+ p')” tanh(X/2) + (p — p') coth(X/Q)]}

{(p +p')? tanh (ﬁ%) 4 (p—p)? coth (5Zw>]

" Ahmw

Thus, the closed-form kernel is:

pleP ) _\/ L ) exp{—ﬁ {(P+p')2tanh <@> + (= p)coth (ﬂ?u)]}

2mhmw sinh

Apart from the replacement mw — 1/(mw) in various places (overall prefactor and exponent coefficient), the functional
X")?) terms with tanh and coth is

form involving the combination of (P + P’)? and (P — P’)? (or (X 4+ X’)? and (X —
indeed analogous to the position-space result, reflecting the oscillator’s z-p symmetry
We can get the diagonal elements of the matrix by setting p’ = p in the kernel, which gives the thermal momentum

(ple " p) —\/ g = |2 een (757) +9] |

distribution:

2mhmw sinh

—\/ 1 exp{—hi tanh (52w>}

27 hmw sinh(Bhw)
From this momentum kernel, one can compute (p?) and all higher moments. The partition function Z = Tr(efﬁﬁ) =

P Bhw
/ \/27rhmwblnh ﬂhw) { hmw tan h( 2 )}dp

_ Thmw
27Thmwsmh(ﬁhw) tanh(Bhw/2)

1 1
4sinh?(X/2)  2sinh(Bhw/2)

[ dp{ple=?"|p).
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V. CLASSICAL AND QUANTUM LIMIT

In physical systems, whether the behaviour is classical or quantum depends on the temperature and density of the system.
These conditions determine whether thermal energy or quantum effects play a more significant role in shaping the system’s
behaviour. Understanding this distinction helps explain why some systems, like gases at room temperature, can be described
classically, while others, like electrons in a metal or particles at extremely low temperatures, require quantum mechanics.

At high temperatures and low densities, systems tend to behave classically. This is because the thermal energy of the
particles is much larger than the energy differences between quantum states, causing particles to occupy a wide range of
energy levels. As a result, quantum effects such as particle indistinguishability becomes negligible as the chances of particles
occupying the same state is small. Additionally, at low densities, particles are far apart, reducing the likelihood of quantum
interactions such as wavefunction overlap.

On the other hand, at low temperatures and high densities, quantum behaviour becomes essential. When the temperature
is low, the thermal energy of particles is small compared to the spacing between quantum energy levels. This causes particles
to occupy the lowest available quantum states, where quantum effects such as indistinguishability and Pauli exclusion principle
can effect the statistics. At high densities, particles are packed closely together, leading to significant wavefunction overlap.

A. High Temperature (Classical) Limit in Position Basis

At high temperatures, T — 400, which implies 8 = 1/kgT — 0. Note that lim,_,¢ tanh = z and limy o cothz = 1/z.

im (z]ple’) = Tim 1/ ™ tanh 21 mw )2 tanh 7% "2 coth BT
éﬂ)(m|p|x Y= glg% - tanh 5 exp{ P [(m + z')” tanh 5 + (z — 2')” coth 5
mw Bhw mw Bh 2

=\ o 2 exp{*ﬁ {(”x/)sz“x*ml)Q%]}

It is evident that unless (z — x’) = 0, then the exponent would have an extremely large negative value, causing the matrix
element to equate to 0. On the other hand, if (z — ') = 0 (when x = z’), the diverging term cancels, and we are left with the

following.
. Aoy [mBuw? mBw? 5
tim (alole) = |/ 75 = exp {—Tx G5.1)

Note that all non-diagonal elements disappear in the classical limit. This is hardly surprising as generally, the non-diagonal
elements of a density matrix corresponds to quantum-mechanical effects. Also related is the complete disappearance of /2. Only
the diagonal elements are left in the density matrix. Equation [5.1]describes the probability density distribution around .

21+ %

Probability density at q

10719

- SR T A S - N~ =

109 -5x1010 0 531010 1109 1.5x109

x (Position)

Figure 1: Probability density distribution (Black) vs High temperature ap-
proximation (Green) in position basis

B. Low Temperature (Quantum) Limit in Position Basis

At low temperatures, T — 0, which implies 5 = 1/kpT — +00. Note that lim; o tanhz = 1 and limg_, oo cothz = 1.
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im (@lple) = lim 1/ ™ tanh Z%xp d ™ (2 4 22 tanh PP 4 (2 — )2 coth DT
Bli}rrolo<$|p|x>— lim — tanh exp{ YTy [(m—i—x) tanh 3 + (z — ') coth 3

mw mw
= ﬁexp{fﬁ [(x+m')2+(mfx/)2]}
mw MW o
= {-g €}

Consider the diagonal elements, z = z':

i (ool = [T e {2
ﬂh_}rr;o(ﬂp\m) =\ exp{ — } (5.2)

This result is purely quantum mechanical, and contains no thermal effects. The Boltzmann constant kg, previously
appearing as part of /3, does not appear in the equation at all.

21+ w

Probability density at q

1610

I s e e e e T R B

-1x10° 51010 0 531010 X109 1500

x (Position)

Figure 2: Probability density distribution (Black) vs Low temperature ap-
proximation (Orange) in position basis

VI. DISCUSSION AND OUTLOOK

The quantum harmonic ensemble typically refers to a single quantum harmonic oscillator in thermal equilibrium with a heat
bath, described statistically via the canonical ensemble. In this context, the system is not in a fixed quantum state but rather in a
statistical mixture of energy eigenstates, each weighted by the Boltzmann factor e ~? =, where 8 = 1/(kgT). The ensemble
thus characterises how one quantum oscillator behaves on average at temperature 7', capturing both quantum mechanical
discreteness and thermal fluctuations. It is a minimal yet nontrivial model that allows one to study fundamental aspects of
quantum statistical mechanics.

This single-particle model generalises naturally to many-particle systems, for instance, a collection of non-interacting
harmonic oscillators. In such cases, the total Hamiltonian is a sum over the individual oscillator Hamiltonians, and the partition
function becomes a product of the individual partition functions. This generalisation is relevant in various physical systems,
including lattice vibrations (phonons) in solids, where each vibrational mode of the lattice behaves approximately like an
independent quantum harmonic oscillator. Interactions between oscillators can also be incorporated perturbatively or via field-
theoretic extensions.

The choice of basis—position or energy—affects how the thermal state is represented. In the energy basis, the density
matrix is diagonal, with each element corresponding to the occupation probability of an energy eigenstate. This basis is
natural for calculations involving partition functions and thermodynamic quantities. In contrast, in the position basis, the
density matrix becomes a function p(z, =), which encodes the probability amplitude of finding the particle at positions =
and z’. Though more analytically involved, this representation reveals spatial coherence and allows one to visualise quantum
statistical behaviour in position space, particularly in the classical limit where the density becomes approximately Gaussian.

Despite its simplicity, the quantum harmonic oscillator ensemble can model a wide range of physical phenomena. It
underpins the quantisation of normal modes in molecules and solids, and serves as a foundational model in quantum optics,
cavity QED, and statistical field theory. In particular, it models bosonic excitations such as phonons and photons, and appears
as the basic unit in path integral formulations and quantum thermodynamic studies. Its analytic solvability makes it an essential
tool for testing methods and exploring the quantum-classical crossover.
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